00 5 THE NONCOMMUTATIVE GEOMETRY OF k - GRAPH C ∗ - ALGEBRAS

نویسندگان

  • DAVID PASK
  • ADAM RENNIE
  • AIDAN SIMS
چکیده

This paper is comprised of two related parts. First we discuss which k-graph algebras have faithful gauge invariant traces, where the gauge action of T k is the canonical one. We give a sufficient condition for the existence of such a trace, identify the C *-algebras of k-graphs satisfying this condition up to Morita equivalence, and compute their K-theory. For k-graphs with faithful gauge invariant trace, we construct a smooth (k, ∞)-summable semifinite spectral triple. We use the semifinite local index theorem to compute the pairing with K-theory. This numerical pairing can be obtained by applying the trace to a KK-pairing with values in the K-theory of the fixed point algebra of the T k action. As with graph algebras, the index pairing is an invariant for a finer structure than the isomorphism class of the algebra.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

ar X iv : m at h / 06 08 39 5 v 1 [ m at h . Q A ] 1 5 A ug 2 00 6 CHARACTERISTIC CLASSES OF A ∞ - ALGEBRAS

A standard combinatorial construction, due to Kontsevich, associates to any A∞-algebra with an invariant inner product, an inhomogeneous class in the cohomology of the moduli spaces of Riemann surfaces with marked points. We describe an alternative version of this construction based on noncommutative geometry and use it to prove that homotopy equivalent algebras give rise to the same cohomology...

متن کامل

THE NONCOMMUTATIVE GEOMETRY OF k-GRAPH C∗-ALGEBRAS

This paper is comprised of two related parts. First we discuss which k-graph algebras have faithful traces. We characterise the existence of a faithful semifinite lowersemicontinuous gauge-invariant trace on C∗(Λ) in terms of the existence of a faithful graph trace on Λ. Second, for k-graphs with faithful gauge invariant trace, we construct a smooth (k,∞)summable semifinite spectral triple. We ...

متن کامل

Noncommutative Manifolds from Graph and K-graph C * -algebras

In [PRen] we constructed smooth (1, ∞)-summable semfinite spectral triples for graph algebras with a faithful trace, and in [PRS] we constructed (k, ∞)-summable semifinite spectral triples for k-graph algebras. In this paper we identify classes of graphs and k-graphs which satisfy a version of Connes' conditions for noncommutative manifolds.

متن کامل

Notes on Noncommutative Geometry

Noncommutative geometry has roots in and is a synthesis of a number of diverse areas of mathematics, including: • Hilbert space and single operator theory; • Operator algebras (C*-algebras and von Neumann algebras); • Spin geometry – Dirac operators – index theory; • Algebraic topology – homological algebra. It has certainly also been inspired by quantum mechanics, and, besides feedback to the ...

متن کامل

ar X iv : 0 70 7 . 39 37 v 1 [ m at h . Q A ] 2 6 Ju l 2 00 7 COHOMOLOGY THEORIES FOR HOMOTOPY ALGEBRAS AND NONCOMMUTATIVE GEOMETRY

This paper builds a general framework in which to study cohomology theories of strongly homotopy algebras, namely A∞, C∞ and L∞-algebras. This framework is based on noncommutative geometry as expounded by Connes and Kontsevich. The developed machinery is then used to establish a general form of Hodge decomposition of Hochschild and cyclic cohomology of C∞-algebras. This generalizes and puts in ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2005